Step of Proof: p-fun-exp_wf
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-fun-exp
wf
:
A
:Type,
f
:(
A
(
A
+ Top)),
n
:
.
f
^
n
A
(
A
+ Top)
latex
by (Unfold `p-fun-exp` ( 0)
)
CollapseTHEN (Auto
)
latex
C
.
Definitions
f
^
n
,
primrec(
n
;
b
;
c
)
,
p-id()
,
x
.
A
(
x
)
,
f
o
g
,
{
i
..
j
}
,
#$n
,
x
:
A
.
B
(
x
)
,
{
x
:
A
|
B
(
x
)}
,
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
t
T
,
Type
Lemmas
primrec
wf
,
p-id
wf
,
p-compose
wf
,
int
seg
wf
,
nat
wf
,
top
wf
origin